
Optimizing Nugget Annotations with Active Learning

Gaurav Baruah1, Haotian Zhang1, Rakesh Guttikonda1,
Jimmy Lin1, Mark D. Smucker2, Olga Vechtomova2

1 David R. Cheriton School of Computer Science
2 Department of Management Sciences

University of Waterloo

{gbaruah, haotian.zhang, rguttiko, jimmylin, mark.smucker, ovechtomova}@uwaterloo.ca

ABSTRACT
Nugget-based evaluations, such as those deployed in the
TREC Temporal Summarization and Question Answering
tracks, require human assessors to determine whether a nug-
get is present in a given piece of text. This process, known
as nugget annotation, is labor-intensive. In this paper, we
present two active learning techniques that prioritize the
sequence in which candidate nugget/sentence pairs are pre-
sented to an assessor, based on the likelihood that the sen-
tence contains a nugget. Our approach builds on the recog-
nition that nugget annotation is similar to high-recall re-
trieval, and we adapt proven existing solutions. Simulation
experiments with four existing TREC test collections show
that our techniques yield far more matches for a given level
of effort than baselines that are typically deployed in exist-
ing nugget-based evaluations.

1. INTRODUCTION
In the context of the Cranfield Paradigm [11], we have wit-

nessed the evolution toward more fine-grained batch evalu-
ation methodologies for assessing system output. Examples
include passage retrieval [1], aspect retrieval [20], and the
nugget evaluation methodology [19, 3]. This paper focuses
on the nugget annotation phase of the nugget evaluation
methodology, where assessors determine if a piece of text
contains a particular nugget.

Nuggets represent atomic facts relevant to users’ infor-
mation needs, usually expressed as short natural language
phrases. Given a set of nuggets, which can be viewed as
an “answer key”, assessors must read all system output and
determine which (if any) nuggets are present—this is called
nugget annotation. Once the nuggets have been identified,
it is straightforward to compute a final metric based on the
matches. It bears emphasizing that the nuggets represent
concepts, and thus the nugget matching process requires un-
derstanding the semantics of the system output—taking into
account synonyms, paraphrasing, and other linguistic phe-
nomena. For example, the nugget “the train crashed at the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24 - 28, 2016, Indianapolis, IN, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983694

buffer stop”might manifest in system responses as“slammed
into the end of the line”, “smash into a barrier”, and “hit the
barrier at the end of the platform”. A baseline evaluation
workflow, and indeed one that is typically deployed in ex-
isting implementations of nugget evaluation methodologies,
requires assessors to exhaustively consider all system out-
puts with respect to all nuggets.

The insight behind our work is the recognition that the
process of nugget annotation can be viewed as a high-recall
retrieval task, where system outputs represent the “doc-
ument collection” and the nuggets represent the “topics”.
Thus, we can exploit recently-developed active learning tech-
niques that have been validated for high-recall retrieval to
the nugget annotation problem. The additional wrinkle,
however, is that each topic contains multiple nuggets that
all (eventually) need to be found. Thus, the question is—in
what order shall we “search” for the nuggets? Our answer
is to let the active learning technique (the learner) itself
tell us where to look next.

The main contribution of this paper is the novel adapta-
tion of a state-of-the-art active learning technique for high-
recall retrieval to the problem of nugget annotations. We
developed two different matching strategies for letting the
learner guide the assessor as to which system output to ex-
amine next and what nuggets are likely to be found there:
in the greedy approach, the learner simply proposes the sys-
tem output most likely to contain a nugget (i.e., a nugget-
sentence pair is presented as a candidate match for annota-
tion); in an alternative approach, we attempt to maximize
the likely number of candidate matches presented to the
user. We apply our proposed techniques to simulate the
nugget annotation process using four large-scale evaluations
from TREC, the QA tracks from 2004–2005 and the Tem-
poral Summarization tracks from 2013–2014. Experimental
results show that our techniques yield far more matches for
a given level of effort than baselines that are typically de-
ployed in existing nugget-based evaluations.

2. BACKGROUND AND RELATED WORK

2.1 Nugget-Based Evaluations
We begin with a more precise formulation of the prob-

lem. In nugget-based evaluations, for a particular informa-
tion need (i.e., a topic), we have an “answer key” comprising
|N | nuggets (expressed as short natural language phrases).
We assume that system output is discretized into some unit
of text (in our case, sentences), and there are |D| such units
across all the system outputs we are trying to evaluate. The

test # #identified #pooled match matrix avg. #ngts avg. #upds #confirmed avg. #conf. uniq. #ngts
collection topics nuggets |N| sentences |D| |N| x |D| / topic / topic matches matches/topic in matches

TS13 9 1,077 9,113 1,283,298 119.7 1,012.6 4,850 538.9 484
TS14 15 1,394 14,651 1,407,448 92.9 976.7 13,635 909.0 837
QA04 64 580 61,642 471,881 9.1 963.2 3,840 60.0 545
QA05 75 758 496,535 4,981,989 10.1 6,620.5 4,159 55.5 687

Table 1: Statistics of the four TREC test collections used in this study. For confirmed matches, exact
duplicates were removed from the judged set of sentences.

nugget annotation process is to complete an |N | × |D| ma-
trix with boolean values: true if the nugget is contained in
the text and false if not. As discussed above, this match-
ing requires considering the meaning of the system output.
Evaluation results are then straightforwardly computed as a
function of this match matrix, although for the purposes of
this work, the actual metrics are not important, and there-
fore it is not necessary to keep track of which d ∈ D was
produced by which system. We make the additional sim-
plifying assumption that the cost of nugget matching is a
constant, even though the unit of system output (sentences)
might vary in length and judging some nuggets may require
more cognitive load than others.

Note that for exhaustive evaluation, we must fill the entire
match matrix. It would, however, make sense to prioritize
the examination of match candidates based on the likelihood
that it contains a nugget. This is especially valuable in a sce-
nario where resources are constrained, as it would represent
a more efficient use of assessor effort. We do exactly this,
guided by active learning techniques.

Four large-scale implementations of the nugget evalua-
tion methodology include the TREC Question Answering
(QA) tracks in 2004–2005 [18, 19] and the TREC Tempo-
ral Summarization (TS) tracks in 2013–2014 [2, 3]. For the
TS tracks, systems were required to return sentences that
are relevant and timely with respect to specified newswor-
thy events (topics). The QA tracks required systems to re-
turn responses (sentences) to questions regarding an event
or entity. For both, the relevance of returned sentences was
measured in terms of nuggets contained in them. We used
data from all these evaluations to validate our work. To
quantify the amount of effort involved in the nugget annota-
tion process, Table 1 lists the number of nuggets identified
by assessors for the various tracks. For example, in TS13,
there was an average of 119.7 nuggets and 1012.6 sentences
per topic with |N | × |D| = 1, 283, 298 total matches across
all topics. Assessors took 15 hours on average per topic for
the matching process for TS13 [10].

For the TS tracks, the annotation process was aided by an
assistive user interface [2] that lists all sentences to be judged
and all nuggets, in two columns. For each relevant sentence,
an assessor annotated parts of the sentence that match the
corresponding nugget. A nugget can match more than one
sentence and a sentence can contain more than one nugget.
For QA evaluations, assessors took a similar approach.

We note that researchers have developed automatic tech-
niques for matching nuggets against system output based
on n-gram overlap, e.g., POURPRE [13] and Nuggeteer [14]
in the context of QA. These techniques are useful for rapid
formative evaluations, but we believe that human review is
still necessary for summative evaluations such as TREC.

To be clear, our work tackles only the nugget annota-
tion process and assumes the existence of a nugget “answer
key”. These nuggets, however, must come from somewhere:

in TREC QA, the nuggets were identified during topic de-
velopment as well as derived manually from the pooled sys-
tem output by assessors [18], which was a labor-intensive
process. Pavlu et al. [15] manually extracted nuggets from
returned documents and used features of identified nuggets
to prioritize assessment of additional documents. Rajput
et al. [16] utilized an active learning feedback loop where
“nuggetization” and assessments are interleaved by auto-
matically weighting sentences within documents as candi-
date nuggets. In this work we tackle the more established
workflow where the creation of the nuggets is distinct from
the nugget annotation process itself; e.g., in TREC TS, the
nuggets were first extracted from Wikipedia articles corre-
sponding to news events that comprised the topics [3].

2.2 Technology-Assisted Review
Technology-assisted review (TAR) applies iterative retriev-

al to help reviewers identify as many relevant documents as
possible from a collection in the context of electronic discov-
ery (eDiscovery). Cormack and Grossman [9] developed an
autonomous TAR (AutoTAR) protocol by extending con-
tinuous active learning (CAL) for TAR. In CAL, the most
likely relevant documents identified using a machine learning
method are interactively presented to reviewers for assess-
ment. Application of CAL for TAR maximizes recall while
requiring less review effort than comparable methods [8].

AutoTAR was implemented as the baseline model imple-
mentation (BMI) for the TREC 2015 Total Recall Track [17].
It initially ranks the entire document collection through a
classifier trained on an initial query (treated as a pseudo-
document) and 100 randomly selected documents, which are
assumed to be non-relevant. The user is asked to assess the
most relevant (i.e., highest scoring) document, and then re-
trains the classifier on this new assessment along with the
query and 100 new random (assumed non-relevant) docu-
ments. In an ideal situation, AutoTAR would repeat this
process, selecting the top document for assessment and then
retraining on all available assessments. Since this is not
computationally practical, AutoTAR requests assessments
in exponentially increasing batches, starting with a batch
size of one and increasing the batch size by Max(1, 0.1 ·
batch_size) each iteration.

The TREC 2015 Total Recall overview paper [17] indicates
that the BMI was hard to beat, i.e., no automatic or manual
run performed consistently better than the BMI. Given the
similarities between identifying relevant documents in a col-
lection and identifying matching nuggets in system responses
(both of which require high recall), we adapted AutoTAR
to our problem, described next.

3. NUGGET ANNOTATION STRATEGIES
For matching sentences with nuggets, we envision an as-

sistive user interface that presents the assessor with match

Figure 1: Simulated assessment interface for nugget
annotation. An assessor reads the sentence and the
nugget, annotates the substring that represents the
nugget (if there is a match), and moves on to the
next match candidate.

candidates—a nugget and a sentence that is likely to con-
tain the nugget (see Figure 1). The assessor judges whether
the sentence indeed contains the nugget and appropriately
annotates the match (i.e., records a representation of the
nugget in the sentence), or rejects the match. The assessor
then moves on to the next match candidate. This is repeated
until all matches are found or some stopping criterion (e.g.,
the assessor runs out of time or the evaluation runs out of re-
sources). We present a number of nugget annotation strate-
gies that select the next match candidate for presentation.

3.1 Baselines
Let us consider the match matrix (Section 2) as having

rows that represent nuggets and columns that represent sen-
tences. One obvious nugget annotation strategy is to con-
sider each sentence in turn and look to see if each nugget
is found in it; this strategy can be described as a column-
by-column (CBC) matching strategy. A converse strategy is
to present a nugget at a time to the assessor and match all
sentences against the nugget. Here, the item under scrutiny
is the nugget and the matches are made row-by-row (RBR).
The choice of sentence or nugget to be assessed next is arbi-
trary. Thus, RBR and CBC represent baselines, and indeed
quite close to the approaches that have been deployed by
previous large-scale evaluations.

3.2 Proposed Techniques
Although the total number of valid matches is the same

across strategies, depending on the matching algorithm, as
well as the assessment interface, the effort required for com-
plete assessment may vary. Given the various combinations
possible, we describe a nugget annotation strategy as the
combination of an assistive user interface along with a spe-
cific active learning algorithm for matching. We develop two
matching strategies and compare them with the CBC and
RBR baselines. Each matching strategy takes as input the
set D sentences pooled for a topic and the set N nuggets
that were identified for the topic. Both strategies follow
the general outline of the AutoTAR BMI deployed for the
TREC Total Recall track, described in Section 2.2, with one
key difference: we train one classifier for each nugget instead
of one classifier for the entire topic.

Most Likely Candidate (MLC). The Most Likely Candi-
date matching strategy presents the match candidate (sen-
tence si, nugget nk) to the assessor that is most likely to
result in a positive match, i.e., the likelihood of nugget nk

being present in sentence si is the highest across all all pos-

sible match candidate pairs. Initially, a separate classifier is
constructed for each nugget in a given topic using the rele-
vant features. Then, all sentences in D are classified accord-
ing to each nugget’s classifier and the scores are recorded,
i.e., a classification score is produced for each position in the
match matrix. The (si, nk) pair with the highest global clas-
sification score is presented to the assessor for review. The
classifier for nk is retrained after the assessor either con-
firms (annotates the nugget representation in the sentence)
or rejects the match. Once assessed, the match candidate
pair (si, nk) is not presented again for assessment. When
five match candidates have been assessed, all sentences are
rescored against the newly-trained classifiers for each nug-
get. Since we have multiple classifiers for each topic, we
do not retrain the classifiers in increasing batch sizes as in
the BMI; instead, we retrain immediately but we recompute
sentence scores periodically after a set number of assess-
ments. The process is repeated until a sufficient number
of valid matches are identified.

Cover Maximum Candidates (CMC). The Cover Max-
imum Candidates (CMC) matching strategy tries to priori-
tize for assessment sentences that are likely to have multiple
matching nuggets. That is, CMC selects sentences that po-
tentially match multiple nuggets. We extend the assessment
interface as envisioned in Figure 1 to display M nuggets that
are likely to match the sentence.

As in MLC, one classifier is trained for each nugget in a
topic. Then, classification scores are computed for the en-
tire match matrix. The sentence si that likely matches the
most number of nuggets (with classification scores greater
than a threshold ε) is chosen for assessment. First, all can-
didate matches that score above a threshold ε are shortlisted
from the match matrix. Then, from the shortlisted candi-
date matches, the sentence si that is likely to match the
maximum number of nuggets is selected. Finally, sentence
si and the top M likely matching nuggets are presented to
the assessor for review. The assessor either confirms or re-
jects each of the M match candidates and the respective
nuggets’ classifiers are accordingly retrained. All sentences
are rescored against the newly-trained classifiers for each
nugget after M match candidates are assessed. The process
is repeated until a sufficient number of valid matches are
found. If there are no scores above ε in the match matrix,
then we fall back to MLC.

Although the choice of M for CMC is arbitrary, present-
ing a relatively small number of nuggets at a time serves two
purposes: (i) the assessor deals with minimal information
overload, and (ii) the match candidates can be displayed on
the screen without the need to scroll or paginate. In our sim-
ulation experiment, one sentence along with at most M = 5
nuggets are putatively displayed in the assessment interface.
As the probability of presenting non-matching candidates
increases in later stages of the assessment process, assess-
ment effort may increase accordingly. We therefore set a
global threshold ε for filtering the likely match candidates.
Without a threshold ε or a presentation limit M , we risk
falling back to CBC from CMC, since TS topics routinely
contain upwards of 50 nuggets. Presenting a large number
of nuggets (large M), may cause errors as assessment fatigue
sets in over time. For our experiments we use logistic regres-
sion classifiers for AutoTAR (Section 5) and through manual
observation of the match candidates’ classification scores, we
set a threshold of ε = 1 (corresponding to a match proba-

bility of 0.73). We found that scores above this setting were
more likely to be valid matches across all test collections.

Another advantage of using a threshold and presenta-
tion limit is that secondary assessors (who are not topic
originators) may benefit by having limited information pre-
sented to them at any given time. It is possible to tune ε
and M dynamically according to the status of the classi-
fiers at various stages of assessment, and set optimal values
via cross-validation for each test collection, an exercise we
leave for future work.

4. EVALUATION METHODOLOGY
Evaluation effort can be measured in a variety of ways,

for example, in terms of time or mental energy spent to
perform a particular evaluation task (e.g., to judge a docu-
ment). In nugget annotations, not only do assessors have to
judge if a sentence is relevant (i.e., contains a nugget), but
they must also provide support by annotating the text con-
tent corresponding to the nugget. It is therefore necessary to
quantify the effort for various components of the assessment
process explicitly. The amount and types of user interactions
with the nugget annotation interface differ across matching
strategies, but in general, the total effort of using an assess-
ment interface to perform an evaluation can be estimated as
the sum of the effort of each interaction [12, 4]. For simplic-
ity, we model effort in abstract units instead of real-world
quantities such as time. Of course, the actual effort may
be estimated by observing assessor behavior or by utilizing
available information about the reading speed of users [6].

We designed our assessment interface (Section 3) to incur
negligible memory load on the assessor by explicitly present-
ing all information needed to reach a decision. In the case of
CBC, RBR, and MLC, the assessor considers only a nugget
and a sentence at a time. In the case of CMC, the inter-
face eliminates scrolling by presenting a small, fixed number
of nuggets to the assessor.

Our basic effort model has the following components:

1. The effort of reading the sentence, λread;

2. The effort of rendering a judgment about the match,
λmatch (which includes annotating the nugget repre-
sentation in the sentence if necessary).

Given the effort associated with these actions, we can com-
pute the cost of making a single match as:

effort = λread + λmatch. (1)

The total cost of the CBC, RBR, and MLC strategies is the
sum of the effort required for each match candidate. For
simplicity, we assume unit cost, i.e., λread = λmatch = 1.

For CMC, we need a slightly different effort model. Here
as well, reading the sentence incurs effort λread. Then, con-
sidering the first matching nugget incurs effort λmatch, as be-
fore. However, considering additional nuggets may not incur
the full matching effort. This is because after considering the
first match, the assessor already has the semantic content of
the sentence in short-term working memory, and so con-
sidering additional nuggets might not take as much effort.
Let us call the effort associated with each subsequent match
λmatch′ . We currently lack empirical evidence as to what the
proper setting of this effort should be, but for these experi-
ments we consider the values λmatch′ = {0, 0.25, 0.5, 0.75, 1}.

In the first case, subsequent matches are “free” (i.e., zero ef-
fort), and in the last case, each additional match is just as
expensive as the first. These seem like reasonable bounds
for effort in practice. Thus, for CMC, we arrive at the
following (where M = 5):

effort = λread + λmatch + (M − 1) · λmatch′ (2)

Note that in this model for CMC, we assume that each sub-
sequent nugget match has constant cost.

5. EXPERIMENTS AND RESULTS
Our experiments were conducted using the nugget-based

test collections from the TREC QA04, QA05, TS13, and
TS14 tracks. Each track provides, for each topic (i) a set
of nuggets, (ii) a pool of sentences from system output, and
(iii) a mapping of nuggets to the assessed sentences (i.e.,
qrels). It is therefore possible to use these data to evalu-
ate our nugget annotation strategies via simulation, based
on the qrels. Table 1 presents statistics for each dataset.
Note that since matches were not found by NIST for all
nuggets, we restricted our experiments to only those that
have at least one confirmed match in the system outputs
(Table 1; column 10). Also, we observed many duplicate
sentences in the judged set for each track. Although adding
duplicates of judged sentences for evaluation does not sig-
nificantly affect the relative effectiveness of systems [5], for
our experiments, we removed all exact duplicates and keep
only one copy to reduce assessment effort. Finally, we note
that QA05 is substantially larger than the other collections
in terms of the number of pooled sentences.

Following the AutoTAR process, our implementations use
tf-idf Porter-stemmed word features and the Sofia-ML logis-
tic regression classifier.1 We retained digits as features since
numbers are heavily used in nuggets. We removed terms
with a document frequency of one due to their sparsity in
order to prune the feature space. For our simulation, a given
sentence is matched with a particular nugget only once.

5.1 Detailed Topic Analysis
We begin with a detailed analysis of a single topic (topic

10 from TS13) to give the reader an intuition of the be-
havior of our techniques. This particular topic has 521
unique (non-duplicate) sentences and 27 nuggets, with a
total of 349 matches.

Figure 2 shows the matches vs. effort plot comparing MLC
to the CBC and RBR baselines. For each curve, each point
represent a nugget match and color is used to identify indi-
vidual nuggets (i.e., all points with the same color represent
the same nugget). The slope of the curves can be inter-
preted as the rate at which we’re finding matches—i.e., the
steeper the slope, the more nuggets we’re finding given a
unit of effort. The RBR matching strategy considers each
nugget in turn, and cycles through all sentences (with an ar-
bitrary ordering of the nuggets). The CBC matching strat-
egy considers each sentence in turn, and cycles through all
nuggets. We see that the MLC strategy switches between
nuggets since it proposes the most promising candidate each
time—for example, the long run of nugget matches in brown
for RBR near the end is prioritized much earlier because it
represents a sequence of “easier” and more likely matches.

1https://code.google.com/archive/p/sofia-ml/

0 5000 10000 15000 20000 25000

0
50

10
0

15
0

20
0

25
0

30
0

35
0

TS−2013: Matches vs. Effort; topic 10

Effort

M
at

ch
es

●●●●
●●●●

●●●
●●●

●●●●●●●●●●●●●●●●
●●●
●●●

●●●●
●

●
●●●●

●●●●
●●●
●●●

●●●
●●●●●●●●●●

●●●●●
●●●●●●●●

●
●

●●
●●●●●

●●●●●
●●●

●●●●
●

●●
●●

●

●●
●

●●●●●●
●●●●

●●
●●●●●

●●
●●●●●

●●●●●
●●●●●

●●●
●●●

●●
●●●

●●●
●●●

●●●●●
●●●

●

●

●
●

●

●●

●
●

●
●●

●

●

●

●

●●

●

●
●●●

●

●
●●

●●
●

●●
●●

●
●

●●
●

●
●

●

●

●

●

●

●
●●

●
●●

●● ●
●

●●
●

●
●●

●
●

●

●

●

●
●

●

●
●

●●
●●

●●

●
●●●

●

●
●

●●●

●●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

● ●●
●

●

●

●
●

●●

●

●

●●

●

●

●

●●

●

●

●
●●●●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

● CBC
RBR
MLC

Figure 2: Illustration of how MLC switches between
different nuggets, based on the most likely match.

Overall, we clearly see that for a given level of effort (x-
axis), the MLC strategy finds more matches.

Figure 3 shows the performance of the CMC strategy in
comparison with the MLC, CBC and RBR strategies on the
same topic (we now remove the point markers for clarity).
Recall that CMC presents multiple nuggets that are likely
to be contained in the same sentence for assessment (Sec-
tion 3.2). Matching the first nugget to the sentence incurs
full effort. However, as we discussed, consideration of subse-
quent nuggets may not require full effort, since the assessor
already holds the sentence in working memory (Section 4).
Unsurprisingly, if we model the effort of matching additional
nuggets as zero, λmatch′ = 0 in the curve CMC–0.0, then we
see that it is the most efficient of all strategies. On the
other hand, if matching additional nuggets incurs the full
cost of the first match, λmatch′ = 1 in the curve CMC–1.0,
then the strategy is less efficient than MLC, at least in the
initial stages of the simulation. For the intermediate val-
ues, λmatch′ = {0.25, 0.75}, the curves lie between those of
λmatch′ = {0.0, 1.0}, and therefore are not shown for brevity.
In this particular topic, the relative performance of MLC
vs. CMC depends on the level of effort and the setting of
λmatch′ , but the overall differences are relatively minor.

5.2 Aggregate Performance
To gauge the performance of a matching strategy across

multiple topics in a test collection, we first normalize, for
each topic, the effort required for finding all matches using
RBR to the range [0,1]. The amount of effort required by
the other strategies are then scaled relative to the total RBR
effort; note that total CBC effort is the same as the RBR
effort. The number of matches is similarly scaled to the
range [0,1], which can be interpreted as recall. We then
perform a 101-point interpolation to plot the match-recall
vs. effort for each strategy. The results are shown in Figure
4 for each test collection: TREC QA from 2004 and 2005,
and TREC TS from 2013 and 2014. These curves show the
effort expended for a particular strategy averaged across all
topics, relative to the maximum effort expended when using
the RBR strategy. Note that all figures have the same scales,
with the exception of QA05, which has substantially more
pooled sentences than the rest (see Table 1).

We find that MLC performs slightly better than CMC on
average when λmatch′ = 1, i.e., the CMC(–1.0) curve, at

0 5000 10000 15000 20000 25000

0
50

10
0

15
0

20
0

25
0

30
0

35
0

TS−2013: Matches vs. Effort; topic 10

Effort

M
at

ch
es

CBC
RBR
MLC
CMC−0.00
CMC−0.50
CMC−1.00

Figure 3: Comparsion of CMC, MLC, and the base-
lines (CBC and RBR) for TS13 topic 10.

least in the early stages of the simulation. We might con-
sider this an upper bound on effort, as matching additional
nuggets is likely to be cheaper in practice. On the other
hand, λmatch′ = 0, i.e., CMC(–0.0) should be considered a
lower bound on effort, as it makes an unrealistic assumption
on assessment effort. We suspect that the real answer lies
somewhere between these two curves, but we note that there
is no appreciable difference between the different strategies
across all the test collections. However, it is clear that MLC
and CMC are much more efficient in finding nugget matches
than the RBR and CBC baselines.

6. FUTURE WORK AND CONCLUSIONS
The starting point of this paper is the observation that

nugget annotations can be viewed as a high-recall retrieval
problem, where system outputs are the “documents” and
the nuggets represent the “topics”. We have successfully
adapted the AutoTAR, a highly-effective baseline from the
TREC Total Recall tracks, to tackle this problem. We show
that by training a separate classifier for each nugget in a
topic, we can let active learning techniques guide the as-
sessment process. Although both our proposed variants are
virtually indistinguishable in terms of performance, simu-
lation experiments show that our approach is much more
efficient than existing baselines.

There are, however, a number of limitations to our study.
We currently use a crude effort model measured in abstract
units: actual effort in practice should be measured in terms
of physical units such as time, and depends on many addi-
tional factors we have not accounted for such as assessor ex-
pertise. A more accurate model must also take into account
assessor fatigue and learning effects, as our effort parameters
are unlikely to remain constant throughout a real evaluation.
Calibration against observations of actual human behavior
is necessary to further validate our model.

Another issue we have yet to address is the question of
when to stop. One simple answer would be to stop when
a pre-allocated amount of effort has been expended, but
it might be desirable to stop when the assessment process
reaches the point of diminishing returns. For this, we might
also look at solutions developed for high-recall retrieval [7].

Nevertheless, despite these shortcomings, we note that
refinements and improvements on our techniques are un-

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QA−2004 : Average Match−Recall at Effort

Relative Effort

M
at

ch
−

R
ec

al
l

CBC
RBR
MLC
CMC−0.00
CMC−0.50
CMC−1.00

0.000 0.005 0.010 0.015

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QA−2005 : Average Match−Recall at Effort

Relative Effort

M
at

ch
−

R
ec

al
l

CBC
RBR
MLC
CMC−0.00
CMC−0.50
CMC−1.00

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TS−2013 : Average Match−Recall at Effort

Relative Effort

M
at

ch
−

R
ec

al
l

CBC
RBR
MLC
CMC−0.00
CMC−0.50
CMC−1.00

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TS−2014 : Average Match−Recall at Effort

Relative Effort

M
at

ch
−

R
ec

al
l

CBC
RBR
MLC
CMC−0.00
CMC−0.50
CMC−1.00

Figure 4: Average interpolated results: QA04 (top, left), QA05 (top, right), TS13 (bottom, left), and TS14
(bottom, right). Note that all graphs are on the same scale except for QA05.

likely to alter the finding that active learning techniques
can reduce the effort associated with nugget annotations.
Future nugget-based evaluations should consider deploying
the types of techniques that we propose here.

7. ACKNOWLEDGMENTS
We would like to thank Leif Azzopardi for helpful discus-

sions and Adam Roegiest for comments on earlier drafts of
this paper. This work was made possible by the facilities
of SHARCNET (www.sharcnet.ca) and Compute Canada,
and was supported in part by NSERC, in part by a Google
Founders Grant, and in part by the University of Waterloo.

8. REFERENCES
[1] J. Allan. HARD Track Overview in TREC 2004 High

Accuracy Retrieval from Documents. TREC, 2004.
[2] J. A. Aslam, M. Ekstrand-Abueg, V. Pavlu, F. Diaz, and

T. Sakai. TREC 2013 Temporal Summarization. TREC,
2013.

[3] J. A. Aslam, M. Ekstrand-Abueg, V. Pavlu, F. Diaz, and
T. Sakai. TREC 2014 Temporal Summarization. TREC,
2014.

[4] L. Azzopardi and G. Zuccon. Building and Using Models of
Information Seeking Search and Retrieval: Full Day
Tutorial. SIGIR, 2015.

[5] G. Baruah, A. Roegiest, and M. D. Smucker. The Effect of
Expanding Relevance Judgements with Duplicates. SIGIR,
2014.

[6] C. L. A. Clarke and M. D. Smucker. Time Well Spent. IIiX,
2014.

[7] G. Cormack and M. Grossman. Engineering Quality and
Reliability in Technology Assisted Review. SIGIR, 2016.

[8] G. V. Cormack and M. R. Grossman. Evaluation of
Machine Learning Protocols for Technology Assisted
Review In Electronic Discovery. SIGIR, 2014.

[9] G. V. Cormack and M. R. Grossman. Autonomy and
Reliability of Continuous Active Learning for Technology
Assisted Review. CoRR, abs/1504.06868, 2015.

[10] M. Ekstrand-Abueg. Personal Communication. 2014
[11] D. Harman. Information Retrieval Evaluation. Synthesis

Lectures on Information Concepts, Retrieval, and Services,
3(2), 2011.

[12] J. He, M. Bron, A. de Vries, L. Azzopardi, and M. de Rijke.
Untangling Result List Refinement and Ranking Quality: A
Framework for Evaluation and Prediction. SIGIR, 2015.

[13] J. Lin and D. Demner-Fushman. Automatically Evaluating
Answers to Definition Questions. NAACL-HLT, 2005.

[14] G. Marton and A. Radul. Nuggeteer Automatic Nugget
Based Evaluation Using Descriptions and Judgements.
NAACL-HLT, 2006.

[15] V. Pavlu, S. Rajput, P. B. Golbus, and J. A. Aslam. IR
System Evaluation using Nugget-based Test Collections.
WSDM, 2012.

[16] S. Rajput, M. Ekstrand-Abueg, V. Pavlu, and J. A. Aslam.
Constructing Test Collections by Inferring Document
Relevance via Extracted Relevant Information. CIKM,
2012.

[17] A. Roegiest, G. Cormack, M. Grossman, and C. Clarke.
TREC 2015 Total Recall Track Overview. TREC, 2015.

[18] E. M. Voorhees. Overview of the TREC 2004 Question
Answering Track. TREC, 2004.

[19] E. M. Voorhees. Overview of the TREC 2005 Question
Answering Track. TREC, 2005.

[20] E. M. Voorhees and D. K. Harman. TREC: Experiment
and Evaluation in Information Retrieval, MIT press
Cambridge, 2005.

